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We show how accurate kinetic information, such as the rates of protein folding and unfolding, can be
extracted from replica-exchange molecular dynamics �REMD� simulations. From the brief and continuous
trajectory segments between replica exchanges, we estimate short-time propagators in conformation space and
use them to construct a master equation. For a helical peptide in explicit water, we determine the rates of
transitions both locally between microscopic conformational states and globally for folding and unfolding. We
show that accurate rates in the �1 / �100 ns� to �1 / �1 ns� range can be obtained from REMD with exchange
times of 5 ps, in excellent agreement with results from long equilibrium molecular dynamics.
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Replica exchange molecular dynamics �REMD� �1,2� is a
powerful method to enhance the conformational sampling,
addressing a serious challenge in molecular simulations �3�.
Multiple noninteracting copies �or “replicas”� of the system
are simulated in parallel, each at a different temperature. To
transfer the barrier-crossing efficiency from runs at high tem-
perature to those at low temperature, configuration ex-
changes are attempted periodically �e.g., at time intervals
�tREMD� between replicas at different temperatures �Ti and
Tj�. Those exchange attempts are accepted with a Metropolis
probability PREMD�i↔ j�=min�1,exp��� j −�i��Uj −Ui��� that
enforces detailed balance and maintains canonical distribu-
tions at each temperature �with Ui the potential energy of the
ith replica, �i=1 / �kBTi�, and kB the Boltzmann constant�.
After an accepted exchange, the particle velocities are appro-
priately rescaled to the new temperature, or redrawn from
respective Maxwell-Boltzmann distributions. Through a se-
ries of exchanges, high-temperature conformations are trans-
ferred occasionally to low temperature runs, facilitating the
exploration of new configuration-space regions.

While enhancing the exploration of conformation space,
REMD apparently does not permit the extraction of useful
kinetic information. Conformation exchanges result in dis-
continuous trajectories, precluding the calculation of equilib-
rium time correlation functions for times longer than the ex-
change time �tREMD. To improve the sampling efficiency of
REMD, the shortest possible �tREMD should be used �4�.
With �tREMD much shorter than the time scales of slow con-
formational changes, the rates of conformational changes ap-
pear inaccessible to REMD simulations. To overcome this
problem, at least for the special case of a two-state system,
an indirect method has recently been proposed in which the
two rate coefficients describing the assumed folding or un-
folding dynamics are assumed to obey an Arrhenius tempera-
ture dependence �5�. However, the protein-folding rate often
exhibits non-Arrhenius temperature dependence �6�, and
folding intermediates are common. To avoid the resulting

problems, master-equation approaches have been described
by Levy and co-workers �7� in a qualitative, yet insightful
analysis. As a quantitative alternative, REMD has recently
been used to estimate the local drift and diffusion coeffi-
cients �8� within the framework of coarse diffusion equations
�9–11�.

Here we show how one can efficiently extract accurate
transition rates from REMD simulations, both locally be-
tween microscopic conformational states and globally be-
tween folded and unfolded conformations �and possible in-
termediates�, without the assumption of a certain temperature
dependence of the underlying kinetics. In fact, our method
can be used to investigate the Arrhenius or non-Arrhenius
character of a particular system. We determine short-time
propagators in conformation space to overcome the problems
arising from the intrinsically discontinuous character of
REMD trajectories �12,13�.

We first realize that REMD permits the accurate �and for-
mally exact� calculation of short-time correlation functions.
The initial configurations after a replica exchange �with ap-
propriate velocity assignment� constitute valid representa-
tives of the equilibrium phase-space distributions at the re-
spective temperatures. From the subsequent Hamiltonian
dynamics until the next exchange, we can obtain exact cor-
relation functions. The maximum time scale will be a few
�tREMD, given by the longest time between accepted replica
exchanges.

Specifically, we here determine the frequency of transi-
tions between conformational states. From the observed mo-
lecular transitions, we construct a master equation describing
the dynamics in a conformation space divided into N distinct
states. We later verify that the dynamics in the resulting pro-
jected space is captured by a master equation, dPi�t� /dt
=� j=1

N �kijPj�t�−kjiPi�t��, where Pi�t� is the population in state
i, and kij �0 is the transition rate from j to i� j. In vector-
matrix notation, we have dP�t� /dt=KP�t�, where the N�N
rate matrix K has off-diagonal elements kij and diagonal el-
ements kii=−� j�ikji�0. The propagators, defined as the
probability of being in state j at time t given that the system
was in state i at time 0, can be written in terms of the matrix
exponential, p�j , t 	 i ,0�= �exp�Kt�� ji. To estimate the ele-
ments of the rate matrix K from either long equilibrium
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simulations or REMD, we use a maximum-likelihood proce-
dure. We first determine the number Nji of transitions from
state i to state j within a time interval �t, irrespective of
intermediate states. The log-likelihood of observing transi-
tion numbers Nji is �12,13�

ln L = �
i=1

N

�
j=1

N

Nji ln p�j,�t	i,0� . �1�

To obtain the rate coefficients of the master equation �with
upper and lower diagonal elements related by detailed bal-
ance�, we maximize ln L with respect to ln kij �i� j� and
ln pi, where pi is the equilibrium population of state i
�12,13�.

Effects of non-Markovian dynamics not captured by the
master equation result in a dependence of the rate matrix on
the time interval �t. Ultimately, for long lag times �t, fast
non-Markovian dynamics is effectively suppressed and the
propagators are dominated by the slow transitions �11–13�.
However, if �t is short, fast motions lead to improper assign-
ments of conformational states. As a consequence, the ex-
tracted rate matrices tend to predict overly fast conforma-
tional relaxation.

The problem of fast non-Markovian dynamics can be sup-
pressed by assigning the states with the help of transition
paths that connect well-defined regions within two confor-
mational cells �Figs. 1�a� and 1�b��. A new state is assigned
only if the trajectory crosses from one well-defined region to
another. Fast equilibrium fluctuations in the projected space
thus do not lead to a state change. We showed previously that
for peptide folding in long standard molecular dynamics
�MD� simulations, this procedure gives accurate rate matri-
ces for observation times �t as short as 1 ps �13�.

Here, we adapt this state-assignment procedure to REMD.
In a first step, we follow each replica irrespective of ex-
changes, and identify transition paths for these continuous
trajectories to assign states. In a second step, transition num-
bers Nji for each of the REMD temperatures are determined
from the respective short trajectory segments uninterrupted
by replica exchange. From the Nji, we then estimate the co-
efficients of the master equation through likelihood maximi-
zation.

In the following, we demonstrate the general procedure to
calculate slow rates from REMD with fast exchange. Master-
equation approaches have been used extensively in peptide
folding studies �7,12,14–18�. We used the GROMACS 3.3
package �19� to run both standard MD and REMD simula-
tions for the folding of a short helical peptide, blocked Ala5
�i.e., CH3CO-Ala5-NHCH3�, in explicit water �20,21�. We
used the AMBER-GSS force field �22� ported to GROMACS
�23�, with peptide �	 ,
� torsional potentials modified to
reproduce experimental helix-coil equilibria �2�. Simulation
details can be found in Ref. �13�.

Four independent MD and REMD runs were initiated
from different configurations �11111—“all helix,”
00000—“all coil,” 01010, and 10101, where 1 denotes a resi-
due in the helical region of the Ramachandran map, ordered
left to right from N to C terminus �13��. The reference MD
runs covered 250 ns at two different temperatures �300 and

350 K�, for a total combined simulation time of 2 �s. The
150-ns REMD simulations used 12 replicas spanning the
295–350 K temperature range for a total combined simula-
tion time of 600 ns per replica. Coordinates were saved ev-
ery 1 ps and REMD exchanges were attempted every
�tREMD=5 ps. Figure 1�c� shows that the resulting REMD
trajectories pass through the whole range of temperatures
multiple times. Each individual trajectory also has a high
likelihood to visit most, if not all, of the 32 coarse-grained
conformational states �Fig. 1�d�; with 00000 and 11111 cor-
responding to states 1 and 32 in binary notation plus 1�. In
the resulting master equation model, the transition rates kij
are different from zero only if states i and j in binary nota-
tion differ by at most one bit, producing the connectivity of a
five-dimensional hypercube.

Figure 2 shows the equilibrium populations in each of the
32 conformational states at 300 and 350 K from REMD tra-
jectories. The inset illustrates the excellent agreement be-
tween equilibrium distributions from MD and REMD at
300 K. At 350 K, the sampling is more efficient and the
agreement even better �data not shown�.
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FIG. 1. �Color online� REMD simulations. �a� Schematic of
transition-path based assignment of conformational states, shown
for illustrative purposes in 1D �with the actual assignment done
using both 	 and 
 �13��. The backbone dihedral angle 
 of ala-
nine exhibits transitions between helical �blue, 

−50°� and non-
helical states �green, 

120°�. Conformations within narrow re-
gions around the two free energy minima �gray� can be assigned as
helical or coil with high confidence. For other conformations �black
dots�, the assigned state changes only if the trajectory crosses be-
tween the well-defined regions, but not on equilibrium excursions
that revert without actual crossing. �b� State assignment correspond-
ing to �a�. �c� Temperatures sampled by a typical Ala5 replica dur-
ing a 150 ns REMD simulation. �d� Conformational states sampled
by the Ala5 replica during the same run.
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Figure 3 demonstrates that the master equation accurately
captures the kinetics. Shown are the two slowest relaxation
times, �2 and �3, at the 12 temperatures sampled in the
REMD runs �where �i=−1 /
i, with 
i the ordered eigenval-
ues of K�. The REMD relaxation times agree perfectly with
those obtained from standard MD runs at 300 and 350 K
�13�. This agreement holds also for all relaxation times �i
�not shown for i�4�, and the individual coefficients kij of
the master equation, as shown in Fig. 4�a� �with linear cor-
relation coefficients �0.94�.

From the slowest relaxation time �2, and the relative
populations in the folded �helical� and unfolded �coil� state

of the peptide, we estimate folding and unfolding rates as a
function of temperature under the assumption of a two-state
relaxation �Fig. 3 inset�. The 32 states i were assigned as
folded or unfolded based on the left-hand eigenvector of K
corresponding to eigenvalue 
2 �13,24� �see Fig. 2�. The re-
sulting folded basin consists of all structures with at least one
�-helical �i , i+4� backbone hydrogen bond among the four
N-terminal residues. Consistent with the assumptions of Ref.
�5�, we find that the resulting folding and unfolding rates
exhibit Arrhenius-like dependence on temperature. The
activation energies for folding and unfolding are Ea

F


22.1 kJ /mol and Ea
U
46.5 kJ /mol.

A possible concern is the influence of fast non-Markovian
dynamics not taken into account by the master equation
model. We can explicitly probe for such effects by plotting
the calculated relaxation times �i as a function of the lag time
�t used to determine the propagators. Figure 4 shows that
the relaxation times from REMD are independent of �t from
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FIG. 2. �Color online� REMD equilibrium populations Peq at
300 and 350 K. Shading indicates the folded basin. �Inset� Scatter
plot of Peq from standard MD and REMD at 300 K. Error bars
indicate standard deviations of the mean.
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FIG. 4. �Color online� Validation of transition rates estimated
from REMD trajectories. �a� Rates kij from REMD versus those
from standard MD �13� at 300 K �diamonds, blue� and 350 K
�circles, red�. �b� Dependence of the relaxation times �2 �top, red�,
�3 �middle, green�, and �4 �bottom, blue� on the lag time �t at
300 K. REMD results are shown as symbols connected by solid
lines. Reference values from standard MD are shown as dashed
lines with error bars. Results for �t��tREMD were obtained from
continuous trajectory segments in which replica exchange attempts
had been rejected.
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1 to 10 ps �2�tREMD�, and agree with the results from stan-
dard MD.

We showed how accurate rates for the conformational dy-
namics of a molecular system can be extracted from REMD
simulations. For a short helical peptide in water, the REMD
kinetics was in perfect agreement with that from standard
MD. The key elements of the procedure are �1� the suppres-
sion of non-Markovian noise by using transition paths in the
assignment of states, �2� the calculation of transition num-
bers Nij on the time scale of replica exchanges, and �3� the
construction of a master equation from the Nij using a maxi-
mum likelihood procedure. The formalism is general, and
can be adapted to Hamiltonian REMD �25�, resolution ex-
change �26�, non-Boltzmann reservoirs �27�, serial replica
exchange �28�, etc.

In practical applications, such as protein folding, the com-
binatorial explosion in the number of states poses a major
challenge for large systems. To reduce the dimension of the
master equation, states could be defined by using conforma-
tional clustering �29�, subsets of the dihedral-angle coordi-
nates �that produce the most Markovian dynamics�, or alter-
native coordinates such as native or non-native amino-acid
contacts or contact fractions, the radius of gyration, or dis-

tances between key residues, with our formalism applicable
to both discrete and continuous variables �10�. In addition,
hierarchical coarse graining �30� can be used to combine fine
and coarse-grained master equations �9,12�. As a second
challenge, the need to collect sufficient transitions at all tem-
peratures to construct a connected master equation could be
overcome by assuming that the individual rates kij, but not
necessarily the slow relaxations �i, satisfy an Arrhenius law.
In that way, transitions observed at higher temperatures can
be used to estimate the relaxation time scales at lower tem-
peratures, augmented by the accurate equilibrium popula-
tions of REMD through the requirement of detailed balance.
Such a procedure is easily implemented within our
likelihood-maximization framework by replacing the indi-
vidual rates with temperature-independent prefactors and ac-
tivation energies.
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